90 research outputs found

    Progeny of Germ Line Knockouts of \u3cem\u3eASI2\u3c/em\u3e, a Gene Encoding a Putative Signal Transduction Receptor in \u3cem\u3eTetrahymena Thermophila\u3c/em\u3e, Fail to Make the Transition from Sexual Reproduction to Vegetative Growth

    Get PDF
    The ciliated protozoan Tetrahymena has two nuclei: a germ line micronucleus and a somatic macronucleus. The transcriptionally active macronucleus has about 50 copies of each chromosome. At sexual reproduction (conjugation), the parental macronucleus is degraded and new macronucleus develops from a mitotic product of the zygotic micronucleus. Development of the macronucleus involves massive genome remodeling, including deletion of about 6000 specific internal eliminated sequences (IES) and multiple rounds of DNA replication. A gene encoding a putative signal transduction receptor, ASI2, (anlagen stage induced 2) is up-regulated during development of the new macronuclei (anlagen). Macronuclear ASI2 is nonessential for vegetative growth. Homozygous ASI2 germ line knockout cells with wild type parental macronuclei proceed through mating but arrest at late macronuclear anlagen development and die before the first post-conjugation fission. IES elimination occurs in these cells. Two rounds of postzygotic DNA replication occur normally in progeny of ASI2 germ line knockouts, but endoreduplication of the macronuclear genome is arrested. The germ line ASI2 null phenotype is rescued in a mating of a knockout strain with wild type cells

    A Novel Family of Mobile Genetic Elements Is Limited to the Germline Genome in \u3cem\u3eTetrahymena Thermophila\u3c/em\u3e

    Get PDF
    In the ciliated protozoan Tetrahymena thermophila, extensive DNA elimination is associated with differentiation of the somatic macronucleus from the germline micronucleus. This study describes the isolation and complete characterization of Tlr elements, a family of approximately 30 micronuclear DNA sequences that are efficiently eliminated from the developing macronucleus. The data indicate that Tlr elements are comprised of an ~22 kb internal region flanked by complex and variable termini. The Tlr internal region is highly conserved among family members and contains 15 open reading frames, some of which resemble genes encoded by transposons and viruses. The Tlr termini appear to be long inverted repeats consisting of (i) a variable region containing multiple direct repeats which differ in number and sequence from element to element and (ii) a conserved terminal 47 bp sequence. Taken together, these results suggest that Tlr elements comprise a novel family of mobile genetic elements that are confined to the Tetrahymena germline genome. Possible mechanisms of developmentally programmed Tlr elimination are discussed

    Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth

    Get PDF
    AbstractThe ciliated protozoan Tetrahymena has two nuclei: a germ line micronucleus and a somatic macronucleus. The transcriptionally active macronucleus has about 50 copies of each chromosome. At sexual reproduction (conjugation), the parental macronucleus is degraded and new macronucleus develops from a mitotic product of the zygotic micronucleus. Development of the macronucleus involves massive genome remodeling, including deletion of about 6000 specific internal eliminated sequences (IES) and multiple rounds of DNA replication. A gene encoding a putative signal transduction receptor, ASI2, (anlagen stage induced 2) is up-regulated during development of the new macronuclei (anlagen). Macronuclear ASI2 is nonessential for vegetative growth. Homozygous ASI2 germ line knockout cells with wild type parental macronuclei proceed through mating but arrest at late macronuclear anlagen development and die before the first post-conjugation fission. IES elimination occurs in these cells. Two rounds of postzygotic DNA replication occur normally in progeny of ASI2 germ line knockouts, but endoreduplication of the macronuclear genome is arrested. The germ line ASI2 null phenotype is rescued in a mating of a knockout strain with wild type cells

    On four species of the genus Mistaria Lehtinen, 1967 (Araneae, Agelenidae) from Kenya

    Get PDF
    In the current study, three species reported from Kenya are transferred from Agelena Walckenaer, 1805 to Mistaria Lehtinen, 1967, i.e. M. fagei (Caporiacco, 1949), comb. n., M. nairobii (Caporiacco, 1949), comb. n. and M. zorica (Strand, 1913), comb. n. One new species M. nyeupenyeusi G.M. Kioko & S. Li, sp. n. is described

    Checklist of the spiders (Araneae) of Kenya

    Get PDF
    A checklist of 805 spider species and subspecies belonging to 57 families described and/or reported from Kenya up to 31 December 2018 is provided. Species distribution within Kenya is given according to counties and specific localities. A historical survey is provided and each record is presented in its original combination. The list is dominated by members of the families Salticidae and Linyphiidae (160 and 110 species, respectively). Eighteen families are represented by a single species. About 300 species are known exclusively from Kenya and 158 species are sub-endemics. Two hundred and forty two species are described from a single sex (159 females and 83 males) and 24 from juveniles. Nairobi County has the greatest number of records, five counties had a frequency of one, while nine counties had no collection records. There are two fossil spiders known from Kenya belonging to the family Oonopidae. One new combination is proposed: Hypsosinga holzapfelae (Lessert, 1936), comb. nov. (ex. Araneus Clerck, 1757).</p

    MicroRNA Expression Profiling Identifies Activated B Cell Status in Chronic Lymphocytic Leukemia Cells

    Get PDF
    Chronic lymphocytic leukemia (CLL) is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA) expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA) identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70+ and IgVH unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL

    The role of peptides in bone healing and regeneration: A systematic review

    Get PDF
    Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge
    • …
    corecore